Dr. J. J. Magdum Trust's

Dr. J.J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 01

Class: FY Div.: D	Year: 2023-24 Sem: I	
	Subject: BCE	
Date: 21/10/2023	Time: 12.00 noon -1.00 pm	Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que.No	Questions	Marks	CO
Que 01	Attempt any two. (8x2)		
1	Civil engineering is very much relevant to other branches of engineering. Explain this statement.		1
2	Write a note on "Role of Civil Engineer".	16	1
3	Explain any two branches of civil Engineering.		1
4	Enlist various principles of building planning. Explain grouping, circulation & prospect		1
Que 02	Attempt any two. (7x2)		1
1	Differentiate between load bearing & framed structure.		1
2	What are the parts of building structure? Explain in detail.	14	1
3	Write a note on types of foundations.		
4	Draw a typical cross section of wall showing various components.		1

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department.

Continuous Internal Evaluation (CIE) No: 02

Class: FY Div.:D Year: 2023-24

Sem: I

Day & Date: Tuesday, 12/12/2023

Subject: BCE Time: 10 am to 11 am

Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que.No				Questic	ons			Marks	CO
	Attempt any two								
1	A series of levels obtained in leveling work is given below: (BM of R.L 415.375) 1.235,2.140,0.785,2.135,2.845,1.375,0.625,1.978,2.312 The leveling instrument was shifted after third, sixth and eighth readings, enter above readings correctly in it, Calculate R.L of each point and apply necessary checks. Use HI method only. Write all calculations					(BM of R.L 2.312 hth readings, se HI method			
2	Explai Uses a	n various lso.	characteris	stics of con	ntour? Exp	olain Char	acteristics &	16	4
3	The following consecutive readings were taken with a level and a 4 m leveling staff on a continuous sloping ground interval. 0.585,1.855,2.955,1.265,2.925,0.350,2.350,2.855,1.655,2.685,2.435 The R.L of A was 100.000 m. The leveling instrument was shifted after third, sixth and ninth readings, Make entries in a Table and apply usual checks. Use rise and fall method only. Write all calculations								
	Attempt any two								
1	How w	vill you fir	nd out area o	of a given f	igure by us	ing planin	neter?		
2	Follow	ving are th	e bearings i	n closed co	mpass trav	erse.			
	Line AB BC CD DE EA								
	F.B	30° 0°	$50^{\circ} 0^{\circ}$	157° 30°	243° 30°	311° 0°			
	B.B	210° 0°	231° 30°	335° 30°	$65^{\circ} 0^{\circ}$	130° 0°		14	4
	Find - i) Included angles.								
	ii) Cor	rected bea	rings.						
3	A 20	m chain y	which was	tested befo	ore the me	asuremen	ts and found		
	correct	t. After m	easuring th	e distance	1400 m, i	t was test	ed again and		
	found	to be 12 c	m too long.	. At the end	l after mea	suring tota	al distance of		
	3000 r	n it is test	ted again ar	nd found to	be 10 cm	too long.	Find the true		
	distanc	e measure	ed.						

Dr. J. J. Magdum Trust's Dr. J.J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. **Continuous Internal Evaluation (CIE) No: 01** A.Y.2023-24(Sem-I)

Subject:- Basic Electrical Engg.	Day
Class: F.Y.B.Tech (Div-C&D)	

&Date :- 23/10/2023 Time:- 10 to 11

Instructions: 1) Use of non-programmable calculator is allowed. 2) Figures to the right indicate full marks

Max Marks: 30

Que. No	Questions	Marks	CO
Que 01	Attempt any 1		
А	Define And State It's Units i) EMF ii)Resistance iii)Current	0.6	
В	Define And State It's Units i) Magnetic Flux ii)Reluctance iii) MMF	06	01
Que 02	Attempt any 3 (8 Marks each)		
А	State & explain Kirchhoff's laws		03
В	Two batteries A & B are connected in parallel across a load resistance of 04 ohm. The emf & internal resistance of battery A & B are 20 volts, 02 ohm and 24 volts, 04 ohm respectively, using Mesh analysis, Find current in each branch.		02
С	Find the current through each resistance for a given network using Node analysis method.	24	02
D	Compare Magnetic Circuit with Electric Circuit.		01

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02 A.Y.2023-24(Sem-I)

Subject: - Basic Electrical Engg.	Day & Date :-Tuesday,12/12/2023
Class: F.Y.B.Tech (Div-C&D)	Time:- 03 pm to 04 pm

Instructions: 1) Use of non-programmable calculator is allowed.Max Marks: 302) Figures to the right indicate full marks3) Figures to the right indicate full marks.

Q.No.1 Solve any Five questions. Co-Po A) Derive the equation of power in R-C circuit 06 2,3 B) A series R-L-C circuit connected across 200 volts, 50Hz ac supply draws a current of 5 amp at unity power factor. If the capacitance is of 507 microfarad, find 06 2,3 i) Resistance ii) Capacitive & Inductive Reactance iii) Power 06 1 C) Why earthing is necessary? Explain any one type of earthing. D) 06 1 Explain CFL with neat sketch. E) 06 1 What are the advantages of 3 Phase over 1 phase system Prove that line current = $\sqrt{3}$ phase current in delta connection circuit 3 F) 06

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur First Year Engineering & Technology Department Continuous Internal Evaluation (CIE) No: 01

Class: FYBTech Div.: A & B Subject: Engg. Chemistry Year: 2023-24 Sem: I

Day & Date: Saturday, 21/10/2023	Time : 10.00 am-11.00 am	Max Marks: 30
----------------------------------	--------------------------	---------------

Instructions: 1) Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Q. No	Questions	Marks	CO
Q. 01	Attempt any two.		
1	With a neat labeled diagram, give construction and working of Boy's calorimeter.		3
2	Discuss the characteristics of a good fuel.	15	1
3	Write a note on Corrections of Bomb calorimeter.		3
Q. 02	Attempt any two.		
1	Explain the terms – Calorific value, Higher calorific value & Lower calorific value.		1
2	Distinguish between liquid and gaseous fuels.		1
3	Following results were recorded in Bomb calorimeter experiment. Calculate the gross and net calorific value of the fuel contains 5.6 hydrogen and latent heat of condensation of steam as 587cal/gm. Weight of coal burnt=0.9 gm Mass of water in calorimeter = 2400 gm Water equivalent of calorimeter = 471 gm Observed rise in temperature = 2.58° C Cooling correction = 0.037° C Fuse wire correction= 12.5 Cal Acid Correction = 60 Cal	15	3

		Dr. J. J. Magdum Trusts,				
Z	2ª	Dr. J.J. Magdum College of Engineering	5,			
3.MAG	UNIT	Jaysingpur.	-			
24 YSIN	anun 25	First Year Engineering & Technology Depart	tmen	nt.		
		Continuous Internal Evaluation (CIE) No:	01			
	Cl Di Su	lass: FY B. Tech Year: iv.: A & B Sem	2023-2 ester: 1	4 [
	D 30	ate: Monday, 23/10/2023 Time: 11.45 P.M. to 12.45 P.M. Ma	ax Marl	KS :		
-	In	 structions: 1) Attempt any two full questions. 2) Use both sides of paper to answer the questions. 3) Non-programmable calculator is allowed. 4) Figures to the right of questions indicate full marks. 5) Text to the right of marks indicate CO & learning level respectively. 		2	1	
Q. I	a)	write statements of second law of thermodynamics	4	2	1	
	b)	Explain Heat and Work.	5	1,2	2	
	c)	A chilled water of 15 kg/s enters the system for air conditioning a tal building with a velocity of 60 m/s at a height of 40 m from the ground The water leaves the system with a velocity of 20 m/s at a height of 70 m. The enthalpies of water entering in and leaving out are 30 KJ/kg and 50 KJ/kg respectively. The rate of work done by a pump in the line is 40 KW. Find out the rate at which heat is removed from the building.	1) 6 1)	1,2, 3	4	
Q. 2	a)	Represent Otto cycle on P-V diagram and obtain expression of ai standard efficiency	r 5	1	3	
	b	Compare Petrol engine and Diesel engine.	5	1	3	
	c)	Describe the working of four stroke CI engine with neat sketch.	5	1	2	
Q. 3	a)	Explain Otto cycle on P-V and T-S diagrams and write the expression for its thermal efficiency.	1 4	1	2	
	b)	Differentiate between two stroke and four stroke I. C. engine.	5	1,2	3	
	c)	The working fluid in a steady flow process flows at a rate of 220 kg/min. The fluid rejects 100 kJ/Sec. passing through the system. The conditions of the fluid at inlet & at outlet are as given below.) e			
		Inlet velocity= 320 m/sec. Inlet pressure= $6 \times 10^5 \text{ N/m}^2$ Inlet internate energy= 2000 kJ/kg Inlet specific volume=0.36 m ³ /kg	1 6	1,2, 3	4	
		Outlet velocity= 140 m/sec. Outlet pressure= $1.2 \times 10^5 \text{ N/m}^2$ Outlet internal energy=1400 kJ/kg Outlet specific volume= $1.3 \text{ m}^3/\text{kg}$ Determine the power capacity of a system.				

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02

Class: FY		Year: 2023-24	
Div.: C&D		Sem: I	
Subject: Engineering Mather	matics I		
Day & Date: Monday, 11/12/2023	Time: 3.00 pm to 4.00 pm	Max Marks: 30	

Instructions: 1) Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Que.No	Questions	Marks	CO
Que 01	Attempt any two		
1	Verify Cayley- Hamilton Theorem for the matrix $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$	6	CO2,4
2	Apply Gauss elimination method ,to solve $x+4y-z=-5$, $x+y-6z=-12$, $3x-y-z=4$	6	CO2,4
3	Verify Cayley- Hamilton Theorem for the matrix $ \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} $	6	CO2,4
Que 02	Attempt any three		
1	Solve by using Gauss Jordan method 10x+y+z=12, 2x+10y+z=13, x+y+5z=7	6	CO2,4
2	Using Jacobi's method ,solve 15x+2y+z=18, 2x+20y-3z=19, 3x-6y+25z=22	6	CO2,4
3	Solve by using Gauss Seidel method 20x+y-2z=17, 3x+20y-z=-18, 2x-3y+20z=25	6	CO2,4
4	Solve by using Gauss Seidel method 10x+y+z=12, 2x+10y+z=13, 2x+2y+10z=14	6	CO2,4

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur First Year Engineering & Technology Department Continuous Internal Evaluation (CIE) No: 01

	Class: FY (AIDS) Div.: C		Year: 2023-24 Sem: I
Date:	21/10/2023	Subject: Basic Civil Engineering Time: 12.00 noon – 1.00 pm	Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que No	Questions		CO
Q 1	Attempt any two (6X2)		
1	Enlist various Building Planning Principles and explain anyone in detail.		1
2	Enlist sub branches of Civil Engineering and explain scope of each.	12	1
3	What do you mean by bearing capacity of soil? Explain in brief.		2
Q 2	Attempt any two (9X2)		
1	Enlist the types of soil and explain in brief	10	2
2	What are the types of foundation? Explain each in detail	18	2
3	What do you mean by setback distances? Explain in detail		1

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur First Year Engineering & Technology Department Continuous Internal Evaluation (CIE) No: 02

Class: FY (AIDS)		Year: 2023-24
Div.: C		Sem: I
	Subject: Basic Civil Engineering	
Day & Date: Tuesday, 12/12/2023	Time: 10 am to 11 am	Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que No	Questions		CO
Q 1	Attempt any two (6X2)		
1	Differentiate between load bearing and framed structure		3
2	Write a note on- concrete ingredients and grades		3
3	How chaining, ranging and offsetting is carried out on field?		4
Q 2	Attempt any two (9X2)		
1	Enlist various levelling operations and explain each in short.	10	5
2	Define contour and explain characteristics of contour	10	5
3	Write a note on-System of Bearings.		4

Dr. J.J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. **Continuous Internal Evaluation (CIE) No: 01**

Class: FY Div.: A & B Subject: Applied Mechanics	Year: 2023-2 Sem: I	4
Date: 21/102023	Time: 3.00 pm to 4.00 pm	Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que.No	Questions	Marks	CO
Que 01	Attempt any three. (4 x 3)	12	
1	Define force and explain characteristics of force.		CO1
2	Define		CO1
	a. Resolution of force		
	b. Composition of force		
3	State and explain parallelogram Law of Forces.		CO1
4	State Lami's Theorem.Write expression of Lami's theorem with sketch.		CO2
Que 02	Attempt any three. (6 x 3)	18	
1	Find resultant of a force system shown in Figure		CO1
2	$X \xrightarrow{7 \text{ kN}} 10 \text{ kN}$ $X \xrightarrow{8 \text{ kN}} 60^{\circ} X$ $5 \text{ kN} 60^{\circ} Y$		
2	Find the resultant of the force system as shown in		COI
	shape		

Dr. J. J. Magdum Trust's

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02

Class: FY Div.: A & B Subject: Applied Mechanics		Year: 2023-24 Sem: l	
Day & Date : Tuesday, 13 /12/2023	Time : 10 am to 11 am	Max Marks: 30	
Instructions: 1) Non-programmable calcu	lator is allowed.		

- 2) Figures to the right indicate full marks.
- 3) CO denotes course outcomes.

Que.No	Questions	Marks	CO
Que 01	Attempt any three	12	
1	State perpendicular axis theorem with neat figure & equation		CO3
2	State & explain Impulse-momentum principle?		CO4
3	Explain Perfectly Elastic impact and perfectly inelastic impact.		CO6
4	Define centripetal and centrifugal force.		CO5
Que 02	Attempt any three	18	
1	Find the M.I. of an inverted Tee section having the flange 100 mm x 30 mm and web 120 mm x 30 mm as shown in figure.		CO3
2	A semicircular portion of diameter 4 cm is cut from a plate 4 cm x 8 cm as shown in figure. O is the centre of semi-circle. Find I _{xx} and I _{yy}		CO3
	A vehicle of mass 600 kg and moving with a velocity of 12		

3	m/s strike another vehicle of mass 400 kg moving at 9 m/s in the same direction .Both vehicles get couple together due to impact. Find the common velocity with which the two vehicles will move.	CO6
4	A man weighing 750 N stands on the floor of a lift.	CO4
	Determine the pull exerted on a lift, when	
	a. The lift moves upward acceleration of 2.5 m/s ² ,	
	b. The lift moves downward acceleration of 2.5 m/s ² .	

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur First Year Engineering & Technology Department Continuous Internal Evaluation(CIE)No:02

Class: FYBTech Div.: A & B Subject: Engg. Chemistry		Year: 2023-24 Sem: I
Day & Date: Monday, 11/12/2023	Time : 10 am to 11 am	Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Q. No	Questions	Marks	CO
Q. 01	Attempt any two		
1	Explain the construction and working of GLC with neat labeled diagram.		3
2	Define electrochemical corrosion. Explain hydrogen evolution mechanism with example.	15	1
3	State Beer-Lambert's law and derive expression for it.		3
Q. 02	Attempt any two		
1	Give schematic representation of a single beam spectrophotometer. How will you determine the concentration of unknown solution?	15	3
2	What is hot dipping process? Write a note on galvanization.	15	2
3	Discuss the factors influencing the rate of corrosion		1

Dr.J.J.Magdum Trust's Dr. J .J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02

Subj Class: F.Y.B.Tech Div.: C / D	ect: Engineering Physics	Year: 2023-2024 Sem: I
Day & Date: Monday, 11/12/2023	Time: 10 am to 11 am	Max Marks: 30

Instructions: 1. Non-programmable calculator is allowed. 2. Figures to the right indicate full marks, CO &PO.

Q.No.1	Solve any FIVE questions from the following.	Marks	CO	PO
A)	Explain the various factors affecting architectural acoustics.	6	1,2	1
B)	Define atomic radius and find it's values for SC, BCC & FCC lattice.	6	1,2	1
C)	Define packing factor and find it's values for SC, BCC & FCC lattice.	6	1,2	1
D)	What are Miller indices? Explain the rules for finding Miller indices of a plane. Write some important characteristics of Miller indices.	6	1,2	1
E)	Derive Bragg's law.	6	1,2	1
F)	i) X-rays of wavelength $0.71A^0$ are reflected from the (110) plane of rock salt crystal (a = $2.82 A^0$). Calculate the glancing angle corresponding to second order reflection.	3	3	2
	ii)A crystal with FCC lattice has density 6250kg/m ³ and molecular weight 60.2. Calculate the lattice constant.			
	OR	3	3	2
	ii) Draw (001), (101) and (211) plane in a cubic crystal system.			

Democracy, Elections and Good Governance Examination, December 2023

First Year Engineering & Technology Department

Day & Date: Wednesday, 13/12/2023 SE	M-I Time 3.00 p	m -4.00 pm.	Total Marks: 50
Name of Student:	Roll No:	SU Exam	Seat No:
nstructions: 1. All questions are compulsory 2. All c	uestions carry equal mar	ks. 3. Fill the bo	ox the correct answe
1. The word 'Democracy' is derived from t	he Greek word 'Kratos'	which means-	
a) Power or Rule b) Republic	c) Freedom	d) Dictatorship	o l
2. 'ADULT' with respect to 'Right to Vote'	means-		
a) Persons who has completed 18 yrs. b)	Persons who has comp	leted 17 yrs.	
b) Persons who has completed 16 yrs.	d) None of the al	oove	
3. Zilla Parishad Chairperson is-			
a) The diplomatic head of Zilla Parishad	b) The Political	head of Zilla Pa	arishad
c) The Logical head of Zilla Parishad	d) The Ethical he	ad of Zilla Pari	shad
4. The 'House of the people' is also known	as –		_
a) Rajya Sabha b) Vidhan Sabha	c) Vidhan Parisha	ad d) Lok	Sabha
5. The term EVM in relation to election pro	ocess means-		
a) The Electronic Vending machine	b) The Electronic Vo	oter machine	
b) c) The Electronic Vetting machine	d) The Electronic Vo	ting machine	
6. At present Lok Sabha consist of n	nembers.		
a) 435 b) 345 c) 543	d) 235		
7. Who is the present President of India?			_
a) Pranab Mukharji b)Shri.Ramnath	Kovind c) Rajnath Sin	g d) Droupac	li Murmu
8. The Rural areas self-government consist	t of-		_
a) Zill Parishad b) Panchayat Samiti	c) Village Panchyat	d) All of the	e above.
9. Whether provisions of NOTA are application	able in Presidential elec	tion?	
a) Yes b) Applicable state wise	c) No d) Applica	ble in some cas	ses
10. The State Election Commission of Maha	rashtra was established	l on-	
a) 15 th August, 1950 b) 26 th J	lanuary, 1947		
c) 08 th October, 1950 d) 26 th A	pril, 1994		
11. In Maharashtra how many 'Zilla Parisha	d' are formed as of date	e?	_
a) 20 b) 26 c) 34	d) 33		
12. Democracy must be based on-			
a) Free & fair elections	b) One party in a count	ry only	
c) No opposition	d) All of the above		
13. The Chief Election Commissioner is app	ointed by-		_
a) Prime Minister b) Preside	nt of India		
c) Chief Justice of Supreme Court	d) None of the abov	e	
14. The party in power whether at the Cent	re or in the state or Sta	tes concerned	shall ensure that it
has not used its official position for the	purpose of its election of	campaign.	
a) The statement is incomplete.	b) The statement is	illogical	
c) The statement is True	d) The statement is	inference	

15. Whether a Minister can combine his official visit with electioneering work?

a) Yes	b) No	c) May be	d) Certainly	
16. Read the following statement & find out the most correct option.				
Statement A:				
Members of Indian	Army, Navy and Air	Force and personnel	of General Reserve Engineer Force	
(Board Road Orgar	ization), Border Sec	urity Force,Indo- Tibe	etan Boarder Police, Assam Rifles,	
National Security	uards, Central Reser	ve Force, Central Indu	ustrial Security Force and Sashastra	
Seema Bal are eligil	le to be registered	service voters.		
Statement B:				
Form 2/2A/3 can be	e downloaded from t	he website of Electio	n Commission of India.	
a) Statement A is tr	ue but Stat. B is false	b) Statement B is	s true but Stat, A is false.	
c) Statement A and	Statement B are fals	e d) Both Stateme	ents A& B are correct	
17. All people have	right to vote.			
a) The statement	s true	b) The statement is i	llogical	
c) The statement	s incomplete	d) The statement is f	false	
18. India is smalles	t democracy in the w	vorld.		
a) True	b) False c)	Incomplete d	I) Illogical	
19. Right to Informa	ition Act, 2005 has b	een enacted by the g	overnment seeks to promote-	
a) Government	b) Transparend	cy c) Legitima	cy d) Autocracy	
20. Condition of ser	vice & tenure of offic	ce of the State Electio	on Commissioner is determined by-	
a) President of In	dia	b) Governor of the S	State	
c) Chief Minister (of the State	d) None of the abov	/e	
21. Who is the Chie	f Election Commissio	oner of India?		
) Mr.Rajiv Kumar	b) Mr.NandLal	c) Mr. R.L.Rajw	vade d) Mr. D.N.Choudhari	
22. 'Wards' in an el	ection process is mad	de for-		
a) Parliament b) Lok Sabha c) Vidh	an Sabha d) Grampa	anchyat and Municipal Councils	
23. The governmen	t at the center and ir	n the states is usually	elected for a term of-	
a) Three years	b) Four Years	c) Six Years	d) Five Years	
24. India has got de	mocracy as a gift from	m the neighboring co	untry China.	
a) True	o) False c)	Incomplete d) N	lone of the above	
25. The Representa	tion of People Act, 19	951 is an act related t	io —	
a) Dowry	b) Election	c) Marriage	d) Alienation	
[
Total Marks:	50			
Name & Signature	e of Supervisor:			-

Name & Signature of Examiner:

Dr. J .J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 01

Class: FY Div.: C and D Year: 2023-24 Sem: I

Subject: Engineering Graphics

Date: 23-10-2023

Time: 12.00 noon to 01.15 pm

Max Marks: 30

Instructions: 1)Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Que.No	Questions	Marks	СО
Que 01	Attempt any two.		
1	Construct an ellipse when the distance of a fixed point from a fixed vertical line is 50 mm and its eccentricity is 75%.		01
2	Trace the path of point P for a circle of diameter 50 mm. The initial position of point P is at the bottom of wheel. Draw the cycloid for one complete revolution of a circle.	10	01
3	Draw the involute of a circle of 60 mm.		01
Que 02	Attempt any two.		
1	The top view of 75 mm long line AB measures 65 mm, while the length of its front view is 50 mm. It's one end A is 10 mm above HP and 15 mm Infront of VP. Draw the projections of AB and determine its inclinations with HP and VP.		01,02
2	Draw the projections of line AB 70mm long, if its bearing is S44°E at A. Its grade is 70 % . Assume point A to be 10 mm above HP and 15 mm In front of VP.		01,02
3	Redraw the given figure, assume suitable distance of point P,Q, R. Draw the true shape of the plane PQR.	10	01,02
Que 03	Attempt any one		
01	An isosceles triangular plate of 50 mm base and 75 mm altitude appears as an equilateral triangle of 50 mm in TV. Draw the projections of a plate if its 50 mm long edge is on the HP and inclined 45 ^o to the VP.	10	01,02
02	A regular hexagonal lamina of side 30mm rests on one of its side on the VP. Draw its projections if the surface of the lamina is inclined at 45° to the VP and a side on which it rest is inclined at 30° to HP.		01,02

Dr. J .J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02

Class: FY Div.: C and D

Year: 2023-24 Sem: I

Subject: Engineering Graphics

Day & Date: Wednesday, 13-12-2023

Time: 10 am to 11.15 am

Max Marks: 30

Instructions: 1)Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Que.No	Questions	Marks	CO
Que 01	Attempt any One		
a	A Hexagonal prism, side of base 30 mm and axis length 60 mm has		
	one of the side of its base in HP which makes an angle of 30° with		01,02,
	VP and axis inclined at an angle 45° with HP. Draw its projections.	10	
b	A right circular cylinder with 50 mm diameter and height 70 mm rest		01,02,
	on HP such that the base is inclined at 60° to HP and top view of axis is		03
	inclined 45° to VP. Draw the projections.		
Que 02	Draw development of cone having base diameter equal to 50mm and		01,02,
	height 70mm resting on base on HP.	05	04
Que 03	Attempt any One		
a	 i) Sectional front view along A-B in the direction X ii) Top view Show important dimensions 	15	01,03

A COULD AND A COUL

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 01

Class: FY Div.: A and B	Year: 2023-24 Sem: I		
Subject: Fundamenta	l of Electronics & Computer Programn	ning (FEC)	
Date: 23/10/2023	Time: 10.00 am to 11.00 am	Max Marks: 30	
Instructions: 1) Non-program	nable calculator is allowed.		
2) Figures to the	right indicate full marks.		

Que.No	Questions	Mark s	СО
01	Attempt any two. (6*2)		
1	Explain semiconductor V-I characteristic and give its one application.		CO1
2	Explain Working of CE amplifier with circuit diagram.	12	CO1
3	Explain basic gates and derived gates with truth table.		CO2
02	Attempt any three. (6*3)		
1	Explain working of Bridge rectifier with circuit diagram and waveforms.		CO1
2	Explain NAND gate as universal gate.		CO2
3	State and explain De'Morgans Laws.	18	CO2
4	Convert following number system.		
	i) 116 Decimal to Binary		CO2
	ii) 4B27 Hexadecimal to decimal		
	ii) (1101001.0111) Binary to Octal		

Dr. J.J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. **Continuous Internal Evaluation (CIE) No: 02**

Class: FY Div.: A and B Subject: Fundamental of Elec	tronics & Computer (FEC)	Year: 2023-24 Sem: I	
Day & Date: Tuesday, 12/12/2023	Time: 3.00 pm to 4.00 pm		Max Marks: 30
Instructions: 1) Non-programmable calc	culator is allowed.		
2) Figures to the right indic	cate full marks.		
3) CO denotes course outc	omes.		

Que.No	Questions	Marks	CO
01	Attempt any two. (6*2)		
1	What is multiplexer? Explain 4:1 multiplexer.		CO2
2	Write short note on A) Microwave Oven B) Tachometer.	12	CO3
3	Explain computer generations in details.		CO5
02	Attempt any three. (6*3)		
1	Explain full adder with logic diagram.		CO2
2	Explain LVDT transducer with diagram and suitable application.	18	CO3
3	What is operating System? Explain types of operating systems.		CO4
4	Enlist and elaborate different types of input devices of computer.		CO4

Dr. J. J. Magdum Trust's

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 01

Class: FY Div.: C&D Subject: Engineering Mathema		lathematics I	Year: 2023-24 Sem: I natics I	
Date:	21/10/2023	Time: 3.00 pm to 4.00 pm		Max Marks: 30
Instructions	: 1) Non-programma	able calculator is allowed.		
	$\mathbf{O} \mathbf{E}' \qquad (1)$	1 . 1 . 0 11 1		

2) Figures to the right indicate full marks.

Que.No	Questions	Marks	CO
Que 01	Attempt any two.		
1	Reduce the following matrix to normal form & find its rank $ \begin{bmatrix} -3 & 4 & 6 \\ 5 & -2 & -3 \\ 3 & 1 & -4 \end{bmatrix} $	6	CO1,2
2	Test the consistency & if possible solve 2x - y + 3z = 1 3x + 2y + z = 3 x - 4y + 5z = -1	6	CO1,2
3	If $\lambda_{1,} \lambda_{2,} \lambda_{3}$ are Eigen values of matrix $\begin{bmatrix} -2 & -9 & 5 \\ -5 & -10 & 7 \\ -9 & -21 & 14 \end{bmatrix}$ then find $\lambda_{1,} + \lambda_{2} + \lambda_{3} \wedge i \lambda_{1} \lambda_{2} \lambda_{3}$	6	CO1,2
Que 02	Attempt any three.		
1	Solve by matrix method x+y+2z=0, x+2y+3z=0, x+3y+4z=0, 3x+4y+7z=0	6	CO1,2
2	For what value of λ the equations $x+y+z=1$, $2x+y-4z=\lambda$, $4x+5y+10z=\lambda^2$ have a solution & solve completely in each case.	6	CO1,2
3	Find the Eigen value & Eigen vector for smallest value of λ for the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$	6	CO1,2
4	Solve by matrix method x+y+z=3, $x+2y+3z=4$, $x+4y+9z=6$	6	CO1,2

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 02

Class: FY Div.: A & B Subject: Engineering Mathematics I		Year: 2023-24 Sem: I	
Day & Date: Monday, 11/12/2023	Time: 3.00 pm to 4.00 pm	Max Marks: 30	

Instructions: 1) Non-programmable calculator is allowed.

2) Figures to the right indicate full marks.

Que.No	Questions	Marks	CO
Que 01	Attempt any two.		
1	Verify Cayley- Hamilton Theorem for the matrix $ \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} $	6	CO2,4
2	Apply Gauss elimination method ,to solve 2x+y+z=10, $3x+2y+3z=18$, $x+4y+9z=16$	6	CO2,4
3	Find characteristic equation of the matrix A where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ and find A^{-1} using Cayley- Hamilton Theorem.	6	CO2,4
Que 02	Attempt any three.		
1	Solve by using Gauss Jordan method the equations x+y+z=9, $2x-i3y+4z=13$, $3x+4y+5z=40$	6	CO2,4
2	Solve using Jacobi's iteration method the equations 20x + y - i2z = 17, 3x + 20y - iz = -i18, 2x - i3y + 20z =25	6	CO2,4
3	Solve by using Gauss Seidel method the equations 10x+2y+z=9, $2x+20y-i2z=-i44$, $-i2x+3y+10z=22$	6	CO2,4
4	Solve by using Jacobi's iteration method upto four iterations only the following equations. 5x + 2y + z = 12, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$	6	CO2,4

Dr. J.J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department.

Continuous Internal Evaluation (CIE) No: 01

Class: FY
Div.: A & B
Subject: Engineering Mathematics-I

Year: 2023-24 Sem: I

Date: 21/10/2023

Time: 12.00 noon to 1.00 pm

Max Marks: 30

Instructions: 1) Non-programmable calculator is allowed.

2) CO denotes course outcomes.

Que.No	Questions	Marks	CO
Que 01	Attempt any two.		
1.	1. Reduce the matrix to echelon form and find its rank. $ \begin{bmatrix} 1234 \\ 214-3 \\ 305-10 \end{bmatrix} $	6	
2.	2. Test for consistency the following equations and if possible solve them by matrix method. 6x + y + z = -i4, $2x -i3y -iz = 0$, $x + 7y + 2z = -i7$	6	1,2
3.	3. Solve the following equations $3x + y - i 5z = 0$, 5x + 3y - i 6z = 0, $x + y - i 2z = 0$, $x - i 5y + z = 0$.	6	
Que 02	Attempt any three.		
1.	Test for consistency the following equations and if possible solve them by matrix method. x + y + i z = -3, $3x + i y - i 2z = -i 2$, $2x + 4y + 7z = 7$	6	
2.	Investigate for what values of β and μ the equations $x + y + iz = 6$, $x + 2y + i = 3z = 10$, $x + 2y + i = \beta = \mu$ have (i) no solution (ii) a unique solution (iii) infinite number of solutions	6	1,2
3.	Find the eigen values of matrix A where A = $\begin{bmatrix} 123\\ 0-26\\ 00-3 \end{bmatrix}$. Also find eigen values of A^{-1} , A^4 , <i>adj</i> . A	6	
4.	Find eigen values of matrix A where A = $\begin{bmatrix} 122\\212\\221 \end{bmatrix}$. Also find eigen vector for greatest eigen value of the matrix A.	6	

Dr. J. J. Magdum Trust's

Dr.J.J.Magdum Trust's Dr. J .J. Magdum College of Engineering, Jaysingpur. First Year Engineering & Technology Department. Continuous Internal Evaluation (CIE) No: 01

Class: F.Y.B.Tech
Div.: C / DSubject: Engineering Physics
Year: 2023-2024
Sem: IDate: 21/10/2023Time: 10.00 am to 11.00 amMax Marks: 30

Instructions: 1.Non-programmable calculator is allowed.

2. Figures to the right indicate full marks, CO & PO.

Q.No.1	Solve any FIVE questions from the following.	Marks	CO	РО
A)	What is grating? Give theory of plane transmission grating for normal incidence.	6	1,2	1
B)	What is double refraction? Give Huygen's theory of double refraction in uniaxial crystals and distinguish between positive and negative crystals.	6	1,2	1
C)	Define resolving power of grating and obtain an expression for resolving power of grating.	6	1,2	1
D) (i)	In a plane transmission grating the angle of diffraction for second order maxima for wavelength 5000 A^{0} is 30° . Calculate the grating constant.	3	3	2
(ii)	Calculate the minimum number of lines in a grating which will just resolve the lines of wavelength 5890 A^0 and 5896 A^0 in the second order.	3	3	2
E)	What are the basic requirements of acoustically good hall?	6	1,2	1
F) (i)	Define any three from the following- Optic axis, Principal section, Specific rotation, Anisotropic media, Reverberation time.	3	1	1
(ii)	The volume of room is 980 m ³ . The wall area of the room is 150 m ² , ceiling area is 95 m ² and floor area is 90 m ² . The average sound absorption coefficient for i) wall is 0.03 ii) ceiling is 0.8 and iii) floor is 0.06. Calculate the reverberation time.	3	3	2