QP. CODE

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test I Sem – I A.Y. – 2024-25

Class Program	FYBTech (all divisions)	Day & Date	Saturday, 26/10/2024
Course Code	01FYBSL101	Time	10.00 am to 11.00 am
Course Title	Applied Mathematics – I	Max. Marks	20

Q.No		Solve the following.	Marks	CO	BL	PI
1	а	Reduce the following matrix to normal form and find its rank. $ \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 2 \end{bmatrix} $	05	1,3	L1, L3	1.1.1
	b	Test for consistency and if possible, solve the equations 2x - y + z = 9, $3x - y + z = 6$, $4x - y + 2z = 7$, $-x + y - z = 4$	05	1,3	L2, L3	1.1.1
		OR				
	b	Investigate for what value of λ and μ the equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$. have i) no solution ii)unique solution				
2	а	Find Eigen values of the matrix A and also find eigen values of (i) A ⁻¹ (ii) adjoint A where $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & 6 \\ 0 & 0 & -3 \end{bmatrix}$	05	1,2	L2, L3	2.4.1
		OR				
	a	Find Eigen values and eigen vector for largest eigen value of the matrix A = $\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$				
	b	Solve the following homogeneous equations 4x + 3y - z = 0, $3x + 4y + z = 0$, $5x + y - 4z = 0$	05	1,3	L2, L3	1.1.1

TA105

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test II Sem – I A.Y. – 2024-25

Class Program	F.Y.B.Tech.	Day & Date	Saturday, 07/12/2024
Course Code	01FYBSL101	Time	01.00 pm to 02.00 pm
Course Title	Applied Mathematics – I	Max. Marks	20

Q.No		Solve the following.	Marks	CO	BL	PI
1	а	Simplify: $\frac{(\cos 3\theta + i\sin 3\theta)^5(\cos \theta - i\sin \theta)^3}{(\cos 5\theta + i\sin 5\theta)^7(\cos 2\theta - i\sin 2\theta)^5}$	05	2	L1,	1.1.1
1					L4	5.1.1
	b	Find all the values of $(1 - i)^{2/3}$			L1	
		OR	05	2	L2, L4	1.1.1 3.1.1
	b	Solve the equation $x^4 + x^3 + x^2 + x + 1 = 0$			<u> </u>	0.1.1
2	а	Arrange in powers of x by using Taylor's series 17+ $6(x + 2) + 3(x + 2)^3 + (x + 2)^4 - (x + 2)^5$	05	2	L1 L2.	2.3.1
	OR				L3	
	а	Using Taylor's series expand $\sin\left(\frac{\pi}{6} + x\right)$ upto x^4 and find $\sin(30^\circ, 30')$.				
	b	Using De Moivre's Theorem Prove that $\frac{\sin 6\theta}{\sin 2\theta} = 16\cos^4\theta - 16\cos^2\theta + 3$	05	2	L1 L2, L4	1.1.1 3.1.1

QP. CODE

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test II Sem – I A.Y. – 2024-25

Class Program	FYBTECH	Day & Date	Friday & 06/12/2024
Course Code	01FYESL107	Time	02:00 pm- 03:00 pm
Course Title	Applied Mechanics	Max. Marks	20

Q. No		Attempt the following	Marks	СО	BL	PI
	a	Define free body diagram with neat sketch. Give two example.	05	CO2	Remember	1.1.a
1	b	State & explain the different types of support with neat sketch.		CO2	Understand	1.3.1
		OR	05			
	b	State & explain Parallel axis theorem with neat sketch.		CO3	Understand	1.2.1
2	a	Calculate support reactions of the beam as shown in figure 60KN $40KN$ $16KN/MA2m$ $-3m$ $-5m$	05	CO2	Apply	2.1.3
	OF	ι {	-			
	a	A weight of 200N is attached by two strings. Calculate the tension in the strings.		CO2	Apply	2.1.3
	b	Calculate support reactions of the beam as shown in figure 40N $60N/m$ E $2m$ $2m$ $2m$ $2m$ $2m$ $2m$ $1m$	05	CO2	Apply	2.1.3
		·	•			

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test I Sem – I A.Y. – 2024-25

Class Program	FY CSE	Day & Date	Thursday
Course Code	01FYESL105	Time	2.00pm to 3.00pm
Course Title	Basic Electronics Engineering	Max. Marks	20

Q.No			Marks	СО	BL	PI
	a	How transistor can be used to form an amplifier? Explain with circuit diagram and waveform.	05	CO1	Understand	
1	b	What are different number systems? Define radix of number system. Mention it for each of the number system.		CO2	Understand, Apply	
		OR	05			
	b	In the following binary number (1001011011010) ₂ Write: i) Decimal weight of LSB ii) Decimal weight of MSB iii) Number of nibbles iv) Number of bytes v) Number of bits Plot & explain the DC load line on output characteristics		CO1	Understand	
2		of CE configuration of transistor. Define Q/Operating point	05			
	a	Explain the working of bridge rectifier with circuit diagram and waveform.				
	b	Convert following codes- i) $(2AF7)_{16} = (?)_2$ ii) $(764)_{10} = (?)_{16}$	05	CO2	Understand, Apply	

QP. CODE

Class Program	FY BTech	Day & Date	06/12/2024
Course Code	01FYESL105	Time	10:00AM To 11:00
Course Title	Basic Electronics Engineering	Max. Marks	20

Q.No			Marks	СО	BL	PI
1	a	Convert the following: i) $(673)_8 = (?)_{10}$ ii) $(9543)_{10} = (?)_{BCD}$	05	2	L3	
	b	Explain Half subtractor with Definition, truth table, K-map, logic equation and logic diagram.		4	L2	
		OR	05			
	b	Explain Half adder with Definition, truth table, K-map, logic equation and logic diagram.				
2	а	State and explain De-Morgan's theorems.		3	L2	
			05			
		OR				
	а	Explain AND gate, OR gate and NOT with statement, logic diagram, equation and truth table.				
	b	Justify the statement "NAND and NOR gates are known as universal gates". Draw Ex-OR and Ex-Nor gate using NAND gate.	05	3,4	L2	

Class Program	F.Y.Civil/Mechanical/ETC	Day & Date	Thursday-24/10/2024
Course Code	01FYESL104	Time	3.30 pm to 4.30 pm
Course Title	Basic Electrical Engineering	Max. Marks	20

Q.No			Marks	СО	BL	PI
	a	Explain effect of temperature on resistance material.	05	1	L2	K1
1	b	Explain and State Kirchhoff"s Current Law		1	L2	K1
			05			
		OR	05			
	b	Explain and State Kirchhoff"s Voltage Law.				
	a	Two Batteries A & B are Connected in Parallel across a Load		2	L3	K3
2		Resistance of 4 Ω . The EMF and internal resistance of battery A				
		and B are 24 V, 4 Ω and 36 V,6 Ω respectively, using mesh	05			
		analysis Find current in Battery A and current in Battery B.				
		OR				
	a	Two Batteries A & B are Connected in Parallel across a Load				
		Resistance of 6 Ω . The EMF and internal resistance of battery A				
		and B are 32 V, 4 Ω and 36 V,6 Ω respectively, using node				
		analysis Find current in Battery A and current in Battery B.				
	b	Define (i)Magnet, (ii) Magnetic Field, (iii) Magnetic Flux,	05	1	L2	K1
		(iv) Flux density.				

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test - II Sem - I A.Y. - 2024-25 Div - D, E & F

Class Program	FYBTech	Day & Date	Friday 06/12/2024
Course Code	FYESL104	Time	11:30 am to 12:30 pm
Course Title	Basic Electrical Engineering	Max. Marks	20

Q.			Marks	СО	BL	PI
INO						
	а	Comparing between electric circuit and magnetic circuit.	05	1	K1	1.2.1
1	b	Explain Magnetic leakage and fringing.		1	K1	1.2.1
			05			
		OR				
	b	Derive the expression of series magnetic circuit for three		1	K1	1.2.1
		different magnetic material		_		
	-	Derive the expression of DMS value of alternating surrout of		2	V A	2 1 1
	a	Derive the expression of RMS value of alternating current of		3	κ4	2.1.1
2		sine wave.				
			05			
		OR				
	а	Derive the equation of current and power in pure inductive		-	K4	2.4.4
		circuit		3	111	2.1.1
		chouk				
	b	A R=50 ohm, L=100 mH, C=50 microfarad are connected in	05	2	K3	2.1.2
	U	series across 230 volts 50Hz ac supply find	00	-	110	2.1.2
		i) Impedance ii) Current iii) Power factor				

Class Program	Mech/ Civil/ E&TC Engineering	Day & Date	Friday, 25/10/2024
Course Code	01FYESL106	Time	11.30-12.30
Course Title	Computer Aided Engineering Drawing	Max. Marks	20

Q. No		Question	Marks	СО	BL	PI
	а	Enlist types of lines and illustrate with neat diagram (Any 5)	05	CO1	Remember	1.3.1
	b	Write a note on page set for AutoCAD 2D drawing.				
1	OR		05	CO2	Remember	5.1.1
	b	Write the path for following draw commands1. Circle 2. Polygon 3. Construction line 4. Hatch 5. Text	05			
	a	Draw BIS sign conventions for any 5 materials.			Analyze	1.3.1
	OR		05	CO1		
2	a What are the types of dimensioning system? explain in brief with neat sketch.				Understand	1.3.1
	b	Write the path for following modify commands1. Trim 2. Mirror 3. Move 4. Offset 5. Array	05	CO2	Remember	5.1.1

TA307

PRN

Class Program		FYBTech	Day & Date	Thursday, 7 th Dec			
Course Code		01FYBSL103	Time	10.00 to 11.00 am			
Course Title		Engineering Chemistry	Max. Marks	20			
Q.No				Marks	СО	BL	PI
	a	Define electrochemical corrosion. Explain o mechanism with example.	xygen absorption	05	03	02	2.1.3
1	b	What is hot dipping process? Discuss galvar labelled diagram. OR	nisation with a neat	05	01	01	1.2.1
	b	What is hot dipping process? Discuss tinning labelled diagram.	g with a neat	_			
2	а	Write a note on Cathodic protection.					1.2.1
		OR		05	02	02	
	а	Write a note on Electroplating					
	b	A Bomb calorimeter experiment gave the fo i) Water equivalent of calorim ii) Weight of coal sample = 1.1 iii) Weight of water taken = 244 iv) Observed rise in temperatur v) Cooling correction = 0.043 vi) Correction due to H2SO4 = vii) Correction due to HNO3 = 3 viii) Fuse wire correction = 4.0 C If the fuel contains 5% hydrogen, calculate to calorific value of the fuel. (Given latent heat Cal/gm).	05	03	02	2.1.3	

Dr. J. J. Magdum Trust's

Dr. J. J. Magdum College of Engineering, Jaysingpur

(An Autonomous Institute)

Test II Sem – I A.Y. – 2024-25 Div- A & B

Class Program	FYBTECH	Day & Date	07 Dec, 2024
Course Code	01FYBSL103	Time	10.00 - 11.00 am
Course Title	Engineering Chemistry	Max. Marks	20

Q.			Marks	CO	BL	PI
No						
1	a	A Bomb calorimeter experiment gave the following data : i) Water equivalent of calorimeter = 550 gm ii) Weight of coal sample = 1.1 gm iii) Weight of water taken = 2460 gm iv) Observed rise in temperature = 2.51OC v) Cooling correction = 0.043 OC vi) Correction due to H2SO4 = 24.2 Cal vii) Correction due to HNO3 = 35.8 Cal viii) Fuse wire correction = 4.0 Cal If the fuel contains 5% hydrogen, calculate the Gross and Net calorific value of the fuel. (Given latent heat of steam = 587 Cal/gm	05	03	02	2.1.3
	b	Write a brief note on- Alkalinity of water.	05	01	01	1.2.1
	b	OR Write a brief note on- Chloride content of water .				
2	a	Discuss in detail about the scale & sludge formation in boilers.	05	02	02	1.2.1
	a	OR Explain the Ion Exchange process for water softening.				
	b	A sample of water on analysis was found to contain the following impurities $Wt. mg/lit$ Mol. wt. CaCO ₃ 12.5 100 Mg(HCO ₃) ₂ 20.6 146 CaCl ₂ 11.1 111 MgSO ₄ 7.8 120 Calculate temporary, permanent and total hardness of water in ppm.	05	03	02	2.1.3

QP. CODE

Class Program	FYBTech	Day & Date	Thursday, 24/10/2024
Course Code	01FYBSL103	Time	10:00- 11.00 am
Course Title	Engineering Chemistry	Max. Marks	20

Q.No			Marks	CO	BL	PI
	a	Derive the expression for Beer-Lambert's Law.	05	03	02	
1	b	Compare Solid fuels with Liquid fuels.				
		OR	05	01	01	
	b	Compare Liquid fuels with Gaseous fuels.				
2	a	Discuss the principal and working of Bomb Calorimeter.				
		OR	05	02	02	
	а	Discuss the principal and working of Boy's Calorimeter.				
	b	With the schematic diagram, explain the principle & working of Single Beam Spectrophotometer. How will you determine the concentration of unknown solution with the help of Single Beam Spectrophotometer?	05	03	02	

Dr. J. J. Magdum Trust's

Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Sem-I

Test II

A.Y. - 2024-25

Class Program	FYBTECH	Day & Date	Friday: 07/12/2014
Course Code	01FYESL108	Time	3.00 pm to 4.00 Pm
Course Title	Fundamentals of Programming Language	Max. Marks	20

Que. No	# Questions M		Marks	CO	BL	PI
	a.	Define Arrays in C with declaration & initialization.	05	CO3	L1	1.3.1
	b. Explain if else-if ladder and Nested if else with example.		05	CO2	L2	1.4.1
1.	OR					
	b. Write a C program to display even numbers and odd numbers in between 1-100 using For Loop.		05	CO2	L6	1.4.1
	a. Explain For Loop and While Loop with example.		05	CO2	L2	1.4.1
		OR				
2.	a. Explain difference between Arrays and String.		05	CO3	L2	1.4.1
	b. Write a C program to display week-days using Switch statement.		05	CO2	L6	1.4.1

QP. CODE

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur (An Autonomous Institute)

Test I

Sem – I A.Y. – 2024-25

Class/ Program	Div.D/E/F	Day & Date	Thursdy,24/10/2024
Course Code	01FYBSL102	Time	11:30-12:30 pm
Course Title	Engineering Physics	Max. Marks	20

Q.No			Marks	CO	BL	PI
	a	Define resolving power of grating and obtain an expression for it.				
1		OR		1,2	K^1 , K^2	
	а	What is grating? Explain theory of plane transmission grating when light falls at 90° on the grating.				
	b	A parallel beam of Sodium light is allowed to be incident normally on a plane grating having 4250 lines per cm and a second order spectral line is observed to be deviated through 30 ⁰ .	04	3	K ³	
2	a	Define: optic axis, Principal plane. With neat diagram explain the phenomenon of double refraction.	06	1.2	V 1	
	OR		00	1,2	\mathbf{K}^{2}	
	a	Give Huygen's theory of double refraction in uniaxial crystal & distinguish between positive and negative crystals.				
	b	Define any four terms from the following: Diffraction, Polarised light, anisotropic media, principal section, principal plane.	04	1	K ¹	

Dr. J. J. Magdum Trust's Dr. J. J. Magdum College of Engineering, Jaysingpur

(An Autonomous Institute)

Test II

Sem – I A.Y. – 2024-25

Class/ Program	FYBTECH	Day & Date	Saturday, 07/12/2024
Course Code	01FYBSL102	Time	11.30 am- 12.30 pm
Course Title	Engineering Physics	Max. Marks	20

Q.No			Marks	CO	BL	PI
1	a	Explain the following terms(Any two): i)Spontaneous Emission ii)Stimulated Emission iii)Population inversion			K ¹ ,	
	OR		06	1,2	K ²	1.2.1
	а	What is holography? Explain recording of hologram and reconstruction of hologram.				
	b	What do you mean by pumping& Explain optical pumping technique & electric discharge pumping technique.	05	1,2	K ¹ , K ²	1.2.1
2	a	What is acoustics of buildings? State the essential features of good acoustics?	0.6	1.0	x r1	
	OR		06	1,2	K^{1} , K^{2}	1.2.1
	a	Explain the term reverberation. State and explain factors controlling reverberation time. State and explain sabine's formula.				
	b	An auditorium has a volume of 8000 m ³ .It is required to have reverberation time of 2 seconds. What should be the total absorption in it?	03	3	K ³	2.1.3