FE/F.Y.B.Tech. (All Branches) (Part-I) (Sem-I&II) Oct./Nov. 2021 Examination APPLIED MECHANICS (CBCS)

Sub. Code: 72509/71819/59941

Day and Date: Wednesday, 23-03-2022

Total Marks: 50

Time: 02.00 pm to 03.00 pm

Answer Key

				Correct	
Q. 1)	Forces are called coplanar when all Forces acting on body lie on				
	A)One point	B)One Plane		В	
	C)Different Plane	D) Perpendicular plane			
Q. 2)	The resultant of two forces of same magnitude acting in opposite direction will be				
	A) 2 x F	B) Zero		В	
	C)F/2	D) 0.707 F			
Q.3)	If two Forces F1 & F2 are acting at an angle of 180 degrees than the Resultant is given by $R=$				
	A) R= F1+F2	B) R= F1-F2		В	
	C) $R = F1/F2$	D)none of above			
Q. 4)	Algebraic sum of moment of all forces about a point is equal to moment of resultant force about same point is statement of				
	A) Polygon Law	B) Law of transmissibility		С	
	C) Varignons theorem	D) Lamis theorem			
Q. 5)	Lami's theorem states that				
	A) Three forces acting at a point will	B) Three forces acting at a point can			
	be in equilibrium	be represented by a triangle, each side			
		being proportional to force		D	
	C) If three forces acting upon a	D) If three forces acting at a point are		D	
	particle are represented in magnitude	in equilibrium, each force is			
	and direction by the sides of a triangle,	proportional to the sine of the angle			
	equilibrium	between the other two			
0.6)	UDL stands for?				
Q . 0)	A) Uniformly diluted length	B) Uniformly developed load		D	
	C) Uniavial distributed load	D) Uniformly distributed load		D	
(0,7)	A been which extends beyond it support	rts can be termed as	-		
Q. /)	A deam which extends beyond it supports can be termed as				
	A) Overhanging beam	B) Over span beam		C	

	C) Isolated beams	D) Tee beams				
Q.8)	Reaction of a roller support is always					
	A) Parallel to Roller Surface	B)Depends on Loading		С		
	C) Normal to Roller Surface	D) In any Direction				
0.9)	Virtual work is a product of a) Virtual F	Force & Displacement b) Force & Virtual				
	Displacement					
	A) Both statement a & b are true	B) statement a is true & b is false		А		
	C) Both statement a & b are false	D) statement b is true & a is false				
Q.10)	The units of moment of inertia of an area are					
	A) kg-m ²	B) m ⁴		В		
	C) kg/m ²	D) m ³		2		
0.11)	Moment of inertia of a triangular section of base (b) and height (h) about an					
	axis through its base, is					
	A) bh ³ /4	B) $bh^{3}/8$		С		
	C) bh ³ /12	D) bh ³ /36				
Q.12)	Find moment of inertia of rectangle having width b=3cm and Depth is d=5cm about					
	centroidal axis	-				
	A)9.95cm ⁴	B)14.85cm ⁴		D		
	C)8.45cm ⁴	D)31.25cm ⁴				
Q. 13)	What is the formula of theorem of perpe	endicular axis?				
	A) $I_{zz} = I_{xx} - I_{yy}$	B) $I_{zz} = I_{xx} + Ah^2$		С		
	C) $I_{zz} - I_{xx} = I_{yy}$	D) $I_{zz} = I_{xx} - Ah^2$				
Q. 14)	A body is said to be in Absolute motion wh	en the motion is described with respect to a				
	A)moving reference	B)fixed reference				
	C)both moving & fixed reference	D) none of above				
Q. 15)	D' Alembert's principle is used for					
	A) Reducing the problem of kinetics to equivalent statics problem	B) Determining stresses in the truss		А		
	C) Reducing the problem of kinematics to equivalent statics problem	D) Designing safe structures				
Q. 16)	Joule is the unit of					
	A) Power	B)Impulse		С		
	C)Work	D)Momentum				
Q. 17)	Which of the following factors are related	ed by work energy principle?				
	A) force, displacement and time	B) force, velocity, time and mass		С		
	C) force, velocity, displacement	D) displacement, time and mass				
Q. 18)	When a vehicle is moving in a circular p	bath on a banked road determine lowest				
	speed of car considering condition of ov	verturning				
	A)\u03c7µrg	B) $\sqrt{\text{grb}/2h}$		D		
	C) $\sqrt{rg(\mu + tan\alpha/1 - \mu tan\alpha)}$	D) $\sqrt{rg(B+2htan\alpha/2h-Btan\alpha)}$				
Q. 19)	When a vehicle is moving in a circular path on a level road determine lowest					
	speed of car considering condition of sk	of skidding A				
	A)õrg	B) Vgrb/2h				
	C) $\sqrt{rg(\mu + tan\alpha/1 - \mu tan\alpha)}$	D) $\sqrt{rg(B+2htan\alpha/2h-Btan\alpha)}$				
Q. 20)	In order to keeps a body moving in a cir	cle there exists a Force on it that is				
	directed towards center of the circle. That force is known as					
	A)centripetal Force	B)centrifugal Force		А		
	C)Magnetic Force	D)gravitational force	L			
Q. 21)	A man weighing W Newton entered a lift w	which moves with an acceleration of a m/s^2 .				

	Find the Force exerted by the man on the floor if lift is moving downward. Acceleration due to gravity is represented by g.			
	A)W(1-a/g)	B) W-a/g		
	C) W(1+a/g)	D)W+a/g		
Q. 22)	A ball is dropped from a height of 2.25 m on a smooth floor and rises to a height of 1.00 m after the bounce. The coefficient of restitution between the ball and the floor is			
	A)0.33	B)0.44		
	C)0.57	D)0.67		
Q. 23)	If the velocities of colliding bodies are directed a long line of impact the impact is called			
	A)Direct Impact	B)Eccentric Impact	А	
	C)Oblique Impact	D)Line of Impact		
Q. 24)	A ball of mass 1 kg moving with a velocity of 2 m/sec collides a stationary ball of mass 2 kg and comes to rest after impact. The velocity of the second ball after impact will be			
	A)0	B)1 m/s		
	C)2 m/s	D)0.5 m/s		
Q. 25)	A heavy elastic ball dropped from the ceiling of a room & after rebounding twice from the Floor reaches a height of equal to one half of ceiling. Find coefficient of restitutionA)0.8B)0.84			
	C)0.7	D)0.74		